PYX-201, a stroma-targeting ADC composed of an anti-EDB+FN antibody conjugated to Auristatin0101, demonstrates strong anti-tumor efficacy across multiple human cancer indications in pre-clinical PDX tumor models

Nicolas Severe¹, Amanda Facklam¹, Liz McMichael¹, Biplab Das¹, Sara Lewandowski¹, Justin Trickett¹, Liyang Diao¹, Shawn Harriman¹, Marsha Crochiere¹, Philipp Steiner¹, Jan Pinkas¹

*PDX models with representative

EDB+FN expression levels compared

to human tumors by IHC were selected

(Poster # 2908)

0 10 20 30 40 50

0 10 20 30 40 50 60

teiner¹, Jan Pinkas¹

Abstract #: 742

ONCOLOGY

Background

Stroma includes the extracellular matrix, vasculature, cancerassociated fibroblasts and mesenchymal stromal cells in the tumor microenvironment (TME) and is crucial to support tumor growth, metastasis and resistance to treatment [1].

Extra-domain B splice variant of fibronectin (EDB+FN) is a matrix protein that is abundantly expressed in the TME of many solid tumors with absent or low expression in normal adult tissue [2].

PYX-201, a first-in-concept antibody-drug conjugate (ADC), is designed to target tumor stroma by binding to EDB+FN and then, in presence of proteases, releasing its toxic payload extracellularly into the TME.

> PYX-201 is designed to have improved plasma stability, better potency and tumor permeability due to optimized payload, linker technology and site-specific conjugation chemistry [2,3].

Potential mechanisms of PYX-201 anti-tumor activity: 1) Toxic payload released in the TME diffuses into and kill tumor cells, 2) recycled payload released from dying tumor cell resulting in additional bystander activity and immunogenic cell death.

PYX-201 is an investigational drug currently in Phase I Clinical Trial (NCT05720117)

PYX-201 Chemical Structure

PYX-201 is a site-specific ADC with a drug antibody ratio of 4 (DAR = 4).

PYX-201 is composed of an anti-EDB+FN monoclonal antibody mAb (fully human IgG1) derived from the L19 clone. The antibody was engineered with cysteines κK183C and K290C for site-specific conjugation. The final mAb is defined as an anti-EDB+FN-K(94)R-hulgG1-K290C-κK183C. The Auristatin-0101 payload was conjugated to the mAb via a mcValCitPABC linker [2].

Bystander Activity of PYX-201 In-Vitro

¹Pyxis Oncology, Boston, MA

Proof-of-concept bystander activity of PYX-201 in a co-culture

HT-29 cells which are negative for EDB+FN were modified to express the Luciferase reporter and cultured as a monolayer or mixed with (A) Caki2 or (B) WI-38 VA-13 2RA (both are positive for EDB+FN) at a 1:3 ratio. Cells were treated with a non-targeted ADC or PYX-201 for 5 days at 8,000 ng/ml and Luciferase activity was measured to evaluate the amount of HT-29 cells in each well. HT-29 cells were sensitive to PYX-201 only when co-cultured with EDB+FN positive cells. The non-targeted ADC did not induce cell killing compared to the untreated condition.

These data demonstrate the bystander effect of PYX-201 in an in-vitro setting.

PDX Mini-Trial Study Objective and Design

Objective: Determine the breadth of PYX-201 anti-tumor activity across a panel of patient-derived xenograft (PDX) models

Calculate %T/C ratio (TV_{treated}/TV_{control}), Tumor Growth Inhibition (TGI=100-T/C), Tumor Regression (PD, SD, PR, CR) to evaluate PYX-201 anti-tumor activity

Broad PYX-201 Anti-Tumor Activity Across a Panel of PDX Models Determined by Calculation of Tumor Growth Inhibition (TGI) at Study End

* PDX models were developed by Champions Oncology or Charles River Laboratories Germany GmbH

These data demonstrate broad PYX-201 anti-tumor activity across multiple human cancer indications in pre-clinical PDX models.

are being tested.

(TGI >70%) to very strong (TGI > 90%) PYX-201 anti-tumor activity.

tumor indications PDX models that were selected. Additional models

10 20 30 40 50 60 (**B,C**) The PYX-201 anti-tumor activity is observed across all 10 solid

PYX-201 induces tumor regression across a panel of PDX models

Tumor regression quantification in individual mice in the PYX-201 treated group:

- Complete Response (CR): Disappearance of measurable tumor for 2 or more consecutive measurements
- Partial Response (PR): ≥ 30% decrease in tumor volume from largest tumor volume for 2 consecutive measurements
- Progressive Disease (PD): ≥ 20% increase in tumor volume from baseline at study endpoint and no sufficient decrease during the study to qualify for PR
- Stable Disease (SD): Neither sufficient decrease or increase in tumor size to qualify as a PR or PD

These data revealed the broad PYX-201 anti-tumor activity across multiple human cancer indications in pre-clinical PDX models.

PYX-201 induces long-term anti-tumor activity

(A) One Breast TNBC and (B) one NSCLC PDX models that showed very strong PYX-201 anti-tumor activity were randomly selected for long-term evaluation. PDXs were monitored for >100 days, and no tumor relapse was observed demonstrating the long-term anti-tumor activity of PYX-201.

Conclusions

- PYX-201 can kill EDB+FN negative cancer cells in a co-culture assay, demonstrating PYX-201 bystander activity in-vitro.
- The PDX Mini-Trial study identified a variety of pre-clinical tumor indications with strong PYX-201 anti-tumor activity and tumor regression. Data will continue to evolve as additional PDX models are being tested.
- Analyses evaluating potential correlations between EDB+FN expression and/or stroma density with PYX-201 anti-tumor activity are on-going.

References

[1] Jurj et al., J Exp Clin Cancer Res 2022 Sep 16;41(1): 276. [2] Hooper et al., Mol Cancer Ther 2022 Sep 6;21(9):1462-1472. [3] Graziani et al., Mol Cancer Ther 2020 Oct; 19(10):2068-2078. Servier Medical Art for figure design: https://smart.servier.com/

Contact Info: Presenting & Primary Author Nicolas Severe nsevere@pyxisoncology.com